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Definition and Motivation

Di-electron width Γee = BeeΓ

Goal: precisely measure Γee of Υ(1S), Υ(2S), and Υ(3S)

Why?
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Treated similarly in Lattice QCD

Lattice QCD calculations of Γee and fB are both in progress

Γee gives us three high-precision tests of Lattice QCD in a decay related to B mixing
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Experimental Technique

Use the time-reversed process: production cross-section of Υ from e+e−

Γee =
MΥ

2

6π2

∫
σ(e+e−→ Υ) dE

Resonances scanned by Cornell Electron Storage Ring (Nov 2001 – Aug 2002)

Data collected by CLEO-III detector:

scan off-resonance

Υ(1S) 0.10 fb−1 0.18 fb−1

Υ(2S) 0.06 fb−1 0.44 fb−1

Υ(3S) 0.10 fb−1 0.16 fb−1

50 times Novosibirsk 1996

All but a well-measured fraction of Υ decays are hadronic

Select hadronic final states inclusively
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Hadronic Backgrounds

Most are effectively subtracted by including a 1/s term in the fit

The rest are very small corrections
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Hadronic Efficiency

Model-independent, data-based method for measuring hadronic efficiency:

Select Υ(2S)→ π+π− Υ(1S)
based on π+π− only (1.3 fb−1)

Set of recoiling Υ(1S) events includes all decays,
even undetectable modes

#pass/#total = ε1S = (97.8 ± 0.5)%

Υ(2S) and Υ(3S) inherit this efficiency with (largest) correction for

Υ′→ XΥ→ X`+`− (` is e or µ)

X`+`− branching fractions measured in data (1.58 ± 0.15)% and (1.34 ± 0.15)%

ε2S = (95.8 ± 0.6)% and ε3S = (96.0 ± 0.6)%
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Integrated Luminosity

We need integrated luminosity for every cross-section measurement:

σi = (# hadrons)i/(integrated luminosity)i

Count e+e−→ γγ events at each energy point (Υ 6→ γγ)

Normalize to physical units (nb−1)
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Beam Energy Measurement

Obtain Ebeam from dipole ~B measurement

(sensitive to position of probe)

Collect scan data in short, independent trials

→ Ebeam is reproducible to ∼ 0.5 MeV
between mini-scans

Alternate scan order above and below peak

Repeat point of highest slope

→ Ebeam is reproducible to . 0.07 MeV
during a mini-scan

→ 0.2% uncertainty in Γee
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Fit Results

9.560 MeV 10.085 MeV 10.400 MeV
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Summary of Uncertainties

Preliminary Results

Contribution to Γee Υ(1S) Υ(2S) Υ(3S)

Statistical∗ 0.7% 1.6% 2.2%

Correct for leptonic modes 0.2% 0.2% 0.3%

Hadronic efficiency 0.5% 0.6% 0.7%

Luminosity calibration ←− 1.3% −→

Cross-section stability 0.1% 0.1% 0.1%

Beam-energy stability 0.2% 0.2% 0.2%

Shape of the fit function 0.05% 0.06% 0.05%

Total 1.6% 2.2% 2.7%

∗ Statistical uncertainty is dominated by γγ counting
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Preliminary Results

Quantity Value Uncertainty

Γee(1S) 1.336 ± 0.009 ± 0.019 keV 1.6%

Γee(2S) 0.616 ± 0.010 ± 0.009 keV 2.2%

Γee(3S) 0.425 ± 0.009 ± 0.006 keV 2.7%

Γee(2S)/Γee(1S) 0.461 ± 0.008 ± 0.003 1.8%

Γee(3S)/Γee(1S) 0.318 ± 0.007 ± 0.002 2.4%

Γee(3S)/Γee(2S) 0.690 ± 0.019 ± 0.006 2.8%
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Preliminary Results (keV)

Γ    Γ      / Γhad totee Γ    Γ      / Γhad totee Γ    Γ      / Γhad totee

Pluto ’79

DESY−Heidel. ’80

LENA ’82

DASP−II ’82

CLEO−I ’84

Crystal Ball ’88

Argus ’94

Novosibirsk ’96

CLEO−III ’05
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Preliminary Results (keV)
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Comparison with Theory

Lattice calculation is still in progress, but ratio of Γee(2S)/Γee(1S) may be compared

Partial result is very sensitive to lattice spacing hep-lat/0507013
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trix element. From this, we obtain Γe+e− = 1.2(1) keV
on the super-coarse unquenched ensemble, 0.77(5) keV
on the coarse unquenched lattices and 0.67(3) keV on
the fine unquenched lattices. This is higher than the ex-
perimental value of 0.58(2) keV, and indicates that the
disagreement with experiment for the ratio above, and
its discretisation errors, largely arise from the matrix el-
ement for the excited state. This is not inconsistent with
the fact that the excited state has more structure in its
‘wavefunction’ and therefore might be more susceptible
to short distance errors than the ground state.
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FIG. 18: The dependence on a2 of the ratio of leptonic width
times mass squared for the 1st excited state of the Υ to that
of the ground state. Crossed, closed and open squares are
from the most chiral of the super-coarse, coarse and fine un-
quenched lattices respectively and closed and open triangles
are from quenched lattices. The burst represents the current
experimental result, and the cross above this is our contin-
uum extrapolated result, including an estimate of the leading
relativistic corrections as described in the text.

As for the hyperfine splitting earlier (Equation 19) we
consider a-dependence in the ratio of Equation 24 of the
form

ratio(a) = ratio(0)(1 + (Λa)2 + . . .). (25)

However, here the a-dependence is stronger than for the
hyperfine splitting (Λ ≈ 900 MeV) and the super-coarse
results are therefore correspondingly less reliable. Using
again a constrained fit we find a continuum value for the
ratio of 0.50(4) for the leading order current. The 8%
error is a combination of the statistical/fitting error and
the effect of discretisation errors.

The higher order relativistic current corrections are
given by operators of the form [50]:

χ†(
1

8(M0
b )2

(∆(2)†σ+σ∆(2) − 2(σ ·∆†)σ(σ ·∆))ψ. (26)

For an Υ at zero momentum the ∆(2) operator acting
on either quark or anti-quark will give the same matrix

element. This is similarly true for the operator made
from one derivative on each. The ith component of the
correction operator then becomes:

χ† 1

4(M0
b )2

(
2

3
∆(2)†σi + 2Dijσj)ψ. (27)

where Dij = ∆i∆j − ∆(2)/3. The second term above is
the piece which couples to a D-wave state [13] and gives
a leptonic width to the 3D1 state. The first term is the
one that we are concerned with and that gives a relativis-
tic correction to the S-wave leptonic width of the form
χ†∆(2)σ/6(M0

b )2ψ. We calculate the matrix element of

this term by inserting a ∆(2) operator at the correlator
sink. We then fit the correlator with the insertion si-
multaneously with the other correlators used to get the
matrix element of the leading order current above. We
have done this for the 0.01/0.05 2+1 flavor coarse ensem-
ble only. There the current correction matrix element (in
lattice units) is -0.0107(2) for the Υ and -0.0131(4) for the
Υ′, i.e. a 3.5% and 5.4% correction to the leading matrix
element respectively. This induces a further 4% reduc-
tion in the ratio of leptonic width times mass squared
for the 2S to 1S. The size of the relativistic corrections
and the overall shift from their difference is perfectly in
keeping with expectations based on power-counting in v2.
Higher order relativistic corrections are then likely to be
negligible.

We apply this shift of 4% to our continuum leading
order current result. We also add an additional 4% error
(αsv

2) to allow for missing radiative corrections to the
relativistic corrections in the ratio (radiative corrections
to the leading order term cancel, as discussed earlier).
This gives our final answer for the ratio of Equation 24
of 0.48(5), to be compared to the existing experimental
result of 0.44(3). Both of these are also marked on Fig-
ure 18. Our result is compatible with experiment but
neither are very precise. Our 10% error is dominated
by the fact that the lattice results depend strongly on
the lattice spacing. Improved experimental results are
expected shortly [45].

The lattice calculation of Γee can be significantly im-
proved. Once the renormalisation of the leading and sub-
leading lattice NRQCD current operators is calculated,
we will be able to compute the Γee results for each ra-
dial excitation of the Υ separately with systematic er-
rors at the 10% level coming from unknown α2

s terms in
Zmatch [47]. We will also discover whether the current
corrections contain a sizeable contribution in the form of
a discretisation correction, so that the scaling with lattice
spacing improves. As discussed earlier, the ratio of lep-
tonic width times mass squared will be more precise than
this because the errors will be set by v4 corrections to the
current and α2

s errors in the v2 current correction piece.
These errors should be at the level of a few percent.

(detail) extrapolation to continuum
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Scale of lattice spacing in GeV−2

Consistent, but with 10% uncertainty (due to extrapolation)

Final lattice precision will be few percent in ratios
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Conclusions

Very careful 1.5–3% measurement of Γee and Γee ratios

Final result will determine luminosity from e+e−, rather than γγ

Tight constraint on Lattice QCD, also a useful input for potential model fits

With new Bµµ from PRL 94, 012001 (2005),

Γ(1S) 53.7 ± 1.7 keV 3.2% (0.3 σ above PDG)

Γ(2S) 30.3 ± 1.4 keV 4.5% (2.1 σ below PDG)

Γ(3S) 17.8 ± 1.0 keV 5.8% (2.4 σ below PDG)
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